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 لاصةـالخ
 
هتتت   ا حفقتتتا  استتتام ال ااضياتتتتيا  احتتتتس اا تتتد ا ستتتا د   يتتت .    تتتضح   تتتن اا اتتتت   إن 

اااحعيتس ن يقاتض   تاابيتان ا   تن اااحعي تا  اا ستا ض. اسام ال ااهن سة ااافاتتيية  ال  ضاسةاا قيقة 
ين ااتتضبط بتتين ااهن ستتة ااافاتتتيية حاب لاتتات  حبتتابمط احتتتي  ااتتضبط بتتح اتتب باستتام ال ااطبي تت  

احعيتتتس بتتتاضياح حاحعيتتتس حااتتت   تتتس اااحعيتتتس ااطبي تتت  باستتتام ال ب تتتة اان ضيتتتا  اب لاتتتا ية حااهن ستتتة 
 :م سة فلاحد ةضسااااافاتيية  حاات ن اا

  Tensorااهن ستتتتة ااافاتتتتتيية   تتتتد   تتتتن ا تتتتاضي  حاا فتتتتا يليقتتتت ل ب تتتتة اا الأحداافلاتتتتد 
فا يل  اتل اا       ن  (Gaussian Curvature)حس كاحس اق  حاا انية الأحاى الأساسيةاالايغة 
استاس  يتى  (Gaussian Curvature) ا ستا  يي تة اقتحس كتاحس  مايفتة لاتي  يتى اا لاتحد 

  Fisher Informationح   Riemannian Metricاا لاية بين 
ااا اضي  حاا فا يل  ن اب ا ااية حاب لاات ااا  ا ااج اايها اافلاد اا ان  يحت  ب ة 

  ب تتة اااحعي تتا  اا ستتا ض. اامالاتتة  .اا ستتا ض اااحعيتتس  فتتة اب ا اايتتة   ااتتة ااتتة ااك ا ااضستتااة   تتد
Fisher Informationااغاية اا ضكعية   بض نةااكبيض. ح     اقاض  اا اغيض اا شحا    يانحن اب  ا 
ا ضيتتتت     تتتتدحااهن ستتتتة ااافاتتتتتيية   الإ لاتتتتاتبتتتتين  ب تتتتة اا لايتتتتا يقتتتت ل  اافلاتتتتد اا ااتتتت 

الاتيغة   تا لا  ااستاح   يتى ننهتا  Expected Fisher Information Matrix ا  تا لا  اتتا
 :  طا.  ن يبد (Riemannian Metric)الأحاى نح  الأساسية
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 Geodesics،Fisher Information Raoو Riemannian Metrics   اا لايتتة بتتين

Distances   بتتين اااحعي تتا  اب ا اايتتة Riemannian Metrics  اقتتحس   اتتب ة اااحعي تتا
 Christoffel symbols  يت ض حاتل ااياحعي تا  اب ا اايتة   (Gaussian Curvature)كتاحس 

  لاي   مايفة  اقحس كاحس باسام ال اا س الأ  يةب ة   س
اتتب ة  Gaussian Curvature  اااطتتضل ا ستتاتتل استتام ال ب تتة افلاتتد ااضابتتس فتت  ا
ااحعيتتس بتتاضياح حاحعيتتس  Gaussian Curvature  اااطتتضل ا ستتكتت اب اتتل اطبيتتل  تت     اااحعي تتا 

  حاا 
 اااحلايا  ساناااا  ح اب اافلاد ااما سحات ن 
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Abstract 

The using of mathematics to get a solution for many problems, is 

known from the past. According to truth we study the using of differential 

geometry to show which continuous distribution converges to normal 

distribution by  connecting between differential geometry and statistics. 

 In particular, we illustrate the connection between Pareto 

distribution and Wald distribution with normal distribution by using some 

statistical theorems and differential geometry. The thesis consists of five 

chapters: 

 The first chapter introduces some definitions and concepts from 

differential geometry like tensor, the first and second fundamental form, 

Gaussian curvature, etc. From these concepts we get different formulas to 

calculate the value of Gaussian curvature based on the relation between 

Riemannian metrics and Fisher information. 

The second chapter explains some definitions and concepts from 

probability and statistics needed in later chapters such as probability 

density function, continuous distribution function, some special continuous 

distributions, Fisher information, convergence of random variable, the law 

of large numbers and the central limit theorem. 

The third chapter presents some connections between statistics and 

differential geometry, such as the definition of the coefficients of the 

expected Fisher information matrix as they equal to the coefficients of the 

first fundamental form (Riemannian metrics) given by: 
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the relation between the Riemannian metrics and geodesics, Fisher 

information Rao distances between probability distributions, Riemannian 

metrics for some distributions, the Gaussian curvature of the probability 
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distributions, and the Christoffel symbols. Some examples are also given to 

compute the Gaussian curvature using different formulas. 

In chapter four we use some methods to calculate the Gaussian 

curvature for some distributions. Also, we apply these methods to calculate 

the Gaussian curvature for Pareto distribution and Wald distribution. 

Chapter five contains some conclusions and recommendations. 
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Introduction 
 

The studies of applying the differential geometry in statistical 

subject are very little and do not cover each the sides, also the references 

under this title are limited. The knowledge of student about the differential 

geometry is very important for the M. Sc. study.  

This thesis is divided into five chapters: 

Chapter one contains some important concepts of differential 

geometry, like tensor, Riemannian metric, second fundamental form, 

Gaussian curvature, geodesics and curvature tensor. 

Chapter two presents some important concepts and theorems of 

mathematical statistics, such as continuous random variable, some 

continuous distributions and Fisher information. Also, we show the 

theorems of law of the large numbers and central limit theorem. 

Chapter three gives some interesting connections between statistics 

and differential geometry. 

 Chapter four contains the results of computing the Gaussian 

curvature (K) of some continuous distributions, like normal, Cauchy, t, 

gamma, Pareto and wald. 

Chapter five contains some conclusions and the recommendations. 

There are some researchers who worked in this field in end of 

twenty century and beginning of twenty one century: 

In 1986, Barndorff- Nielsen, O. E.[1] used the concept that the 

coefficients of the expected Fisher information matrix as equal to the 

coefficients of the first fundamental form. 

In 1997, Kass, R.E. [2] used the same concept of Barndorff- Nielsen, 

O.E. using the following formula 
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to compute the Gaussian curvature (K) of trinomial and t families. He gave 

the general form of a location-scale manifold of density: 
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For some density function f. 

 In 1999, Chen W.W.S. [3] provided a deeper and broader 

understanding of the meaning of Gaussian curvature, using some more 

general alternative computational methods. He used the formula 
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to compute the Gaussian curvature (K) for the distributions (normal, 

Cauchy and t family). He showed that in normal distribution Gaussian 

curvature 
2

1
K , and in Cauchy distribution K=-2, while in t  family 

distribution with r degrees of freedom, he get 
r

r
K

2

3
 . In other words, 

the Gaussian curvature of 3t  distribution is the geometric mean of the 

curvatures for the Cauchy and normal distribution. 

In 2003, Gruber M.H.J. [4] used the following formula 
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to compute the Gaussian curvature of gamma family of distributions and 

normal distribution. He illustrated some connections between the 
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behaviour of Gaussian curvature of the gamma family of distributions and 

the central limit theorem as follows: 

The random variable that has a Gamma distribution with α=n is the sum of 

exponential random variables. By the central limit theorem as n→  this 

random variable tends towards that of a normal distribution. As n→  the 

curvature of the gamma family of distributions tends towards 
2

1
 , the 

curvature of the normal family of distributions. 

In 2004, Arwini K., Del Riego L. and Dodson C. T. J. [5] provided 

formulae for universal connections and curvatures on exponential families 

and gave an explicit example for the manifold of gamma distributions. 

  



 

 
CHAPTER ONE 

 

Some Definitions    
and Concepts from 

Differential Geometry 
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In this chapter, we introduce some basic ideas and important 

concepts of differential geometry such as tensor, first fundamental form, 

second fundamental form, Gaussian curvature, geodesics, etc. 

 We shall denote the familiar three dimensional Euclidean space 

(traditionally denoted 3R ) as 3E . In studying the geometry of a surface in 

3E  we find that some of its most important geometric properties belong to 

the surface itself and not the surrounding Euclidean space. 

 The property of a surface which depends only on the metric form is 

an intrinsic. For example, Gaussian curvature is an intrinsic property of a 

surface. 

 

1.1 Tensor [6] 

An nth- rank tensor in m- dimensional space is a mathematical 

object that has n indices and nm  components and obeys certain 

transformation rules. Each index of a tensor ranges over the number of 

dimensions of space. However, the dimension of the space is largely 

irrelevant in most tensor equations (with the notable exception of the 

contracted kronecker delta). Tensors are generalizations of scalars (that 

have no indices), vectors (that have exactly one index), and matrices (that 

have exactly two indices) to an arbitrary number of indices. 

Tensors provide a natural and concise mathematical framework for 

formulating and solving problems in areas of physics such as elasticity, 

fluid mechanics, and general relativity. 

The notation for a tensor is similar to that of a matrix (i.e., 

)( ijaA  ), except that a tensor 
jk

i
ijk

ijk aaa ,, ...
... , etc., may have an arbitrary 

number of indices where i, j, k...=1, 2, ..., m. In addition, a tensor with rank 

r+s may be of mixed type (r, s), consisting of r so-called “contravariant” 

(upper) indices and s “covariant” (lower) indices. Note that the positions of 
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the slots in which contravariant and covariant indices are placed are 

significant so, for example, 
a  is distinct from 

a . 

While the distinction between covariant and contravariant indices 

must be made for general tensor, the two are equivalent for tensors in 

three-dimensional Euclidean space, and such tensors are known as 

cartesian tensors. 

Objects that transform like zeroth-rank tensors are called scalars, 

those that transform like first- rank tensors are called vectors, and those 

that transform like second-rank tensors are called matrices. In tensor 

notation, a vector v would be written vi, where i= 1, 2, …, m, and matrix is 

a tensor of type (1, 1), which would be written 
j

ia  in tensor notation. 

Tensors may be operated on by other tensors (such as metric tensors, 

the permutation tensor, or the kronecker delta) or by tensor operators (such 

as the covariant or semicolon derivatives). The manipulation of tensor 

indices to produce identities or to simplify expressions is known as index 

gymnastics, which includes index lowering and index raising as special 

cases. These can be achieved through multiplication by a so-called metric 

tensor ,,,
j

i
ij

ij ggg  etc., e.g.,  

i
j

ij AAg     i, j= 1, 2, …, m       …. (1.1) 

i
j

ij AAg              …. (1.2) 

The metric tensor is a tensor of rank 2 that is used to measure distance 

between any two points in a given space. 

Tensor notation can provide a very concise way of writing vector and more 

general identities. For example, in tensor notation, the dot product u.v is 

simply written 

i
ivuvu . ,                     …. (1.3) 

where repeated indices are summed over (Einstein summation). 
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Similarly, the cross product can be concisely written as  

kj
ijki vuvu  )( ,                    …. (1.4) 

where ijk  is the permutation tensor 

Contravariant second-rank tensors are objects which transform as 

kl

l

j
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iij A
x

x

x

x
A








  i, j, k, l=1, 2, …, m                …. (1.5) 

Covariant Second- rank tensors are objects which transform as  

mlkjiC
x

x

x

x
C kl

j

l

i

k
ij ,...,2,1,,,   








                          …. (1.6) 

Mixed Second- rank tensors are objects which transform as  

mlkjiB
x

x

x

x
B k

l
j

l

k

ii
j ,...,2,1,,,   








                       …. (1.7) 

where ),...,,( 21 mii xxxxx   is the coordinate transformation, and 

),...,,( 21 mii xxxxx   is its inverse. 

 

Definition (1.1.1) [7] 

A second-tensor rank symmetric tensor is defined as a tensor A for 

which 

nmmn AA   
 

Definition (1.1.2) [8] 

An antisymmetric (also called alternating) tensor is a tensor which 

changes sign when two indices are switched. For example, a tensor 

nXX
A

,...,
1 such that   

1,...,,...,,...,,...,,...,,...,1 XjXiXnXnXjXiXX
AA   

where              are indices.  

The simplest nontrivial antisymmetric tensor is therefore an 

antisymmetric rank-2 tensor, which satisfies nmmn AA  . 

n,...,XX
1
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1.2 The First Fundamental Form [9, 10] 

Suppose M is a surface determined by 3),( EvuX 


 and suppose 

)(t


 is a curve on M, the variable t is called the parameter of the curve, 

 bat ,  for Rba , . Then we can write ))(),(()( tvtuXt


   ((u(t), v(t)) is 

a curve in 2R whose image under 


 is X ). Then  

21)( XvXu
dt

dv

v

X

dt

du

u

X
t















         …. (1.8) 

If )(ts  represents the arc length along 


 (with 0)( as ) then 

drrts
t

a

  )()( 


           …. (1.9) 

where r is a real variable. 

And  

)(t
dt

ds



          …. (1.10) 

so  

  2121
2

2

..)( XvXuXvXut
dt

ds 









  

      ...2. 22
2

2111
2 XXvXXvuXXu


  

Following Gauss’ notation (briefly) we denote  

11.XXE


 ,       21.XXF


 ,             22 .XXG


     …. (1.11) 

and have 

222

2 



































dt

dv
G

dt

dv

dt

du
F

dt

du
E

dt

ds
      .... (1.12) 

or in differential notation 

     222 2 dvGdudvFduEds        …. (1.13) 
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Definition (1.2.1) [9] 

 Let M be a surface determined by  vuX ,


. The first fundamental 

form (or more commonly metric form) of M is 

2










dt

ds
 or  2ds  as defined 

in formulas (1.12) and (1.13).  

 

Definition (1.2.2) [10] 

 The matrix of the first fundamental form of a surface M determined 

by  vuX ,


 is 



















2221

1211

gg

gg

GF

FE

 

where E, F, G are as defined in formula (1.11). This matrix determines dot 

products of tangent vectors. 

If 21 XbXav


  and 21 XdXc


  are vectors tangent to a surface M at a 

given point, then 

  2121 .. XdXcXbXav


  

          GbdbcadFEac   

         

















d

c

GF

FE
ba  

 

Notation [9] 

We now replace the parameters u and v with 21   and  uu  in formula 

(1.13). 

We then have 

    ji

ji
ij dudugdugdudugdugds 

,

22
22

21
12

21
11

2 2   …. (1.14) 

where the summation is taken over the set {1, 2}. If v


 is a vector tangent 

to M at a point p


 and  21,vvv 


 in the basis  21, XX


 for the tangent 
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plane at p


, then we have .
i

i
i Xvv


 

If )(t


 is a curve on M where 


 is represented by  )(),( 21 tutuX


 then  





i

i
i XuXtuXtut


2
2

1
1 )()()( . 

 

1.3 The Second Fundamental Form [11] 

 We have treated a path )(t


 along a surface M as if it were the 

trajectory of a particle in 3E . We then interprete )(t 


as the acceleration 

of the particle. Well, a particle can accelerate in two ways: 

(1) it can accelerate in the direction of travel, and (2) it can accelerate by 

changing its direction of travel. We can therefore decompose  


 into two 

components, 
T



   (representing acceleration in the direction of travel) and 

N



   (representing acceleration that changes the direction of travel). We 

may have  dealt with this by taking 
T



   as the component of  


 in the 

direction of 


 computed as  






























 








 .
T

 

and 
N



   as the “remaining component” of 


 (that is, 

TN



  ). 

 The unit tangent vector i
i XussT



 )()(   with 


 parameterized 

in terms of arc length s,  )(),()( 21 susuXs


 . We can see that 

)()( sTs 


  is a vector normal to 


 where NkT


 . We again 

decompose  


into two orthogonal components, but this time we make 

explicit use of the surface M. We wish to write: 

nor 


tan  

where tan 


 is the component of  


 tangent to M and nor 


 is the 

component of  


 normal to M. Notice that tan 


 will be a linear 

combination of 1X


 and 2X


 (they are a basis for the tangent plane) and 
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nor 


 will be a multiple of the unit normal vector to M, 




















21

21 as  calculated
XX

XX
UU 




. 

 Since  )(),()( 21 susuXs


  and i
i Xu
 

  (here, 'means d/ds), then 

ds

Xd
uXuXuXu ii

i
i

i
i

i
i


 
  

Now i
i Xu



 is part of tan 


, but i

i Xu 


 may also have a component in the 

tangent plane. Well,  

  
ds

du

u

X

ds

du

u

X
susuX

ds

d

ds

Xd ii
i

i
2

2

1

1

21 )(),(















 

         =
j

j

iii u
u

X
u

u

X
u

u

X 
















2

2

1

1
. 

If we denote ijji
X

uu

X 





2

 (we have assumed continuous second partials, 

so the order of differentiation doesn’t matter) then we have j
ij

i uX
ds

Xd 





. 

So acceleration becomes 

ij
ji

r
r XuuXu

 
 . 

We now need only to write ijX


 in terms of a component in the tangent 

plane (and so in terms of 1X


and 2X


) and a component normal to the 

tangent plane (which will be a multiple of U


).  

 

Definition (1.3.1) [11] 

 With the notation above, we define the formula of Gauss as  

ULXX ijr
r
ijij


 .        …. (1.15) 

That is we define ijL  as the projection of ijX


 in the direction U


. Notice, 
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however, that r
ij  may not be the projection of ijX


 onto rX


 since the rX


’s 

are not orthonormal. 

 

Note [11] 

 Since projections are computed from dot products, we immediately 

have that 

21

21..
XX

XX
XUXL ijijij 







        …. (1.16) 

 We therefore have 

UuuLXuuu ji
ijr

jir
ij

r
nor


)()(tan


     …. (1.17) 

 

Definition (1.3.2) [12] 

 The second fundamental form of surface M is the matrix 








2221

1211

LL

LL
 

where the determinate of this matrix is L. The projections ijL  are defined 

in formula (1.16). 
 

1.4 Gaussian Curvature [13] 

 If  zyxf ,,  is a (scalar valued) function, then for c a constant, 

 zyxf ,, =c determines a surface (we assume all second partials of f are 

continuous and so the surface is smooth). The gradient of f is 























z

f

y

f

x

f
f ,, . 

 If 

v  is a vector tangent to the surface  z,y,xf =c at point 

 


zyxp ,, , then   z,y,xf  is orthogonal to 

v (and so f  is 

orthogonal to the surface). The equation of a plane tangent to the surface 

can be calculated using f  as the normal vector for the plane. 
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