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Abstract

The using of mathematics to get a solution for many problems, is
known from the past. According to truth we study the using of differential
geometry to show which continuous distribution converges to normal
distribution by connecting between differential geometry and statistics.

In particular, we illustrate the connection between Pareto
distribution and Wald distribution with normal distribution by using some
statistical theorems and differential geometry. The thesis consists of five
chapters:

The first chapter introduces some definitions and concepts from
differential geometry like tensor, the first and second fundamental form,
Gaussian curvature, etc. From these concepts we get different formulas to
calculate the value of Gaussian curvature based on the relation between
Riemannian metrics and Fisher information.

The second chapter explains some definitions and concepts from
probability and statistics needed in later chapters such as probability
density function, continuous distribution function, some special continuous
distributions, Fisher information, convergence of random variable, the law
of large numbers and the central limit theorem.

The third chapter presents some connections between statistics and
differential geometry, such as the definition of the coefficients of the
expected Fisher information matrix as they equal to the coefficients of the
first fundamental form (Riemannian metrics) given by:

- :_Iaz log f (x,6) f (% O)dx= _E 0% log f (x,6)
! 06,00, ’ 00:00; |

the relation between the Riemannian metrics and geodesics, Fisher
information Rao distances between probability distributions, Riemannian

metrics for some distributions, the Gaussian curvature of the probability



distributions, and the Christoffel symbols. Some examples are also given to
compute the Gaussian curvature using different formulas.

In chapter four we use some methods to calculate the Gaussian
curvature for some distributions. Also, we apply these methods to calculate
the Gaussian curvature for Pareto distribution and Wald distribution.

Chapter five contains some conclusions and recommendations.
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Introduction

Introduction

The studies of applying the differential geometry in statistical
subject are very little and do not cover each the sides, also the references
under this title are limited. The knowledge of student about the differential
geometry is very important for the M. Sc. study.

This thesis is divided into five chapters:

Chapter one contains some important concepts of differential
geometry, like tensor, Riemannian metric, second fundamental form,
Gaussian curvature, geodesics and curvature tensor.

Chapter two presents some important concepts and theorems of
mathematical statistics, such as continuous random variable, some
continuous distributions and Fisher information. Also, we show the
theorems of law of the large numbers and central limit theorem.

Chapter three gives some interesting connections between statistics
and differential geometry.

Chapter four contains the results of computing the Gaussian
curvature (K) of some continuous distributions, like normal, Cauchy, t,
gamma, Pareto and wald.

Chapter five contains some conclusions and the recommendations.

There are some researchers who worked in this field in end of
twenty century and beginning of twenty one century:

In 1986, Barndorff- Nielsen, O. E.[1] used the concept that the
coefficients of the expected Fisher information matrix as equal to the
coefficients of the first fundamental form.

In 1997, Kass, R.E. [2] used the same concept of Barndorff- Nielsen,
O.E. using the following formula
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_ 1 [of10aVG), af 1 E
JEG|au\JE au | ovliG ov
to compute the Gaussian curvature (K) of trinomial and t families. He gave

the general form of a location-scale manifold of density:

{p(x)%f[%)

For some density function f.
In 1999, Chen W.W.S. [3] provided a deeper and broader

understanding of the meaning of Gaussian curvature, using some more

(u,v) e R x R+}

general alternative computational methods. He used the formula

Rpoe (1212)

2
where (12,12) =Ry, = Zerglgmz

EG-F? EG-F? m=1

R_l_k —il“-lk _irlk +F'TF1' _r!‘;rl- sumonm
itk — i | m mi !
T bu; ou; ! b

i
to compute the Gaussian curvature (K) for the distributions (normal,

Cauchy and t family). He showed that in normal distribution Gaussian
curvature K :—%, and in Cauchy distribution K=-2, while in t family

distribution with r degrees of freedom, he get K :—%3. In other words,
r

the Gaussian curvature of ts distribution is the geometric mean of the
curvatures for the Cauchy and normal distribution.
In 2003, Gruber M.H.J. [4] used the following formula
E

1 o G,-F F -E -G
u_ v au_v 1 EuFuGu

2JEG-F2|u JEG_F? . EG_F2 _4(EG_|:2)2 c E G
Vv \Y Vv

to compute the Gaussian curvature of gamma family of distributions and

normal distribution. He illustrated some connections between the
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behaviour of Gaussian curvature of the gamma family of distributions and
the central limit theorem as follows:

The random variable that has a Gamma distribution with a=n is the sum of
exponential random variables. By the central limit theorem as n—oo this

random variable tends towards that of a normal distribution. As n— o the
i . 1
curvature of the gamma family of distributions tends towards —o the

curvature of the normal family of distributions.
In 2004, Arwini K., Del Riego L. and Dodson C. T. J. [5] provided
formulae for universal connections and curvatures on exponential families

and gave an explicit example for the manifold of gamma distributions.
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Chapter One Some Definitions and Concepts from Differential Geometry

In this chapter, we introduce some basic ideas and important
concepts of differential geometry such as tensor, first fundamental form,
second fundamental form, Gaussian curvature, geodesics, etc.

We shall denote the familiar three dimensional Euclidean space
(traditionally denoted R®) as E>. In studying the geometry of a surface in

E3 we find that some of its most important geometric properties belong to
the surface itself and not the surrounding Euclidean space.

The property of a surface which depends only on the metric form is
an intrinsic. For example, Gaussian curvature is an intrinsic property of a

surface.

1.1 Tensor [6]
An nth- rank tensor in m- dimensional space is a mathematical

object that has n indices and m" components and obeys certain
transformation rules. Each index of a tensor ranges over the number of
dimensions of space. However, the dimension of the space is largely
irrelevant in most tensor equations (with the notable exception of the
contracted kronecker delta). Tensors are generalizations of scalars (that
have no indices), vectors (that have exactly one index), and matrices (that
have exactly two indices) to an arbitrary number of indices.

Tensors provide a natural and concise mathematical framework for
formulating and solving problems in areas of physics such as elasticity,
fluid mechanics, and general relativity.

The notation for a tensor is similar to that of a matrix (i.e.,
ijk...

A=(a;)), except that a tensor ay, ,a’™,a), etc., may have an arbitrary

number of indices where i, j, k...=1, 2, ..., m. In addition, a tensor with rank
r+s may be of mixed type (r, s), consisting of r so-called “contravariant”

(upper) indices and s “covariant” (lower) indices. Note that the positions of
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the slots in which contravariant and covariant indices are placed are
‘i 2 e dicti VA
significant so, for example, a;,, is distinct from a .

While the distinction between covariant and contravariant indices
must be made for general tensor, the two are equivalent for tensors in
three-dimensional Euclidean space, and such tensors are known as
cartesian tensors.

Objects that transform like zeroth-rank tensors are called scalars,
those that transform like first- rank tensors are called vectors, and those
that transform like second-rank tensors are called matrices. In tensor

notation, a vector v would be written v;, where i= 1, 2, ..., m, and matrix is

a tensor of type (1, 1), which would be written aij in tensor notation.

Tensors may be operated on by other tensors (such as metric tensors,
the permutation tensor, or the kronecker delta) or by tensor operators (such
as the covariant or semicolon derivatives). The manipulation of tensor
indices to produce identities or to simplify expressions is known as index
gymnastics, which includes index lowering and index raising as special

cases. These can be achieved through multiplication by a so-called metric

tensor g;;,9", 9/, etc., e.g.,
g"A = A ij=1,2,...,m (LD

g Al = A o (1.2)
The metric tensor is a tensor of rank 2 that is used to measure distance
between any two points in a given space.
Tensor notation can provide a very concise way of writing vector and more
general identities. For example, in tensor notation, the dot product u.v is
simply written

u.v:uivi, ... (L.3)

where repeated indices are summed over (Einstein summation).
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Similarly, the cross product can be concisely written as
(UxV); =€ ulvk, ...(L4)
where € is the permutation tensor
Contravariant second-rank tensors are objects which transform as

pii — 06 X pk

L,k I=1,2,...,m ....(L5
OXk OX| J (1.5)
Covariant Second- rank tensors are objects which transform as
OXk OX| ..
ho= Cur 1,1,k 1=12,....,m ....(1.6
ij ox x| kIl 1] (1.6)

Mixed Second- rank tensors are objects which transform as
B’-i _ 8X,’ 8x|
J ’
OXy OX]

B i, j.kl=12..m .. (1.7

where  X; = X{(Xy,X5,...,X,) 1S the coordinate transformation, and

X; =X; (X1, X5,...,Xp) 1S its inverse.

Definition (1.1.1) [7]
A second-tensor rank symmetric tensor is defined as a tensor A for

which
Amn — Anm
Definition (1.1.2) [8]

An antisymmetric (also called alternating) tensor is a tensor which

changes sign when two indices are switched. For example, a tensor

A1 %N such that

The simplest nontrivial antisymmetric tensor is therefore an

antisymmetric rank-2 tensor, which satisfies A™ =—-A"",
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1.2 The First Fundamental Form [9, 10]

Suppose M is a surface determined by X (u,v) <= E® and suppose

a(t) is a curve on M, the variable t is called the parameter of the curve,
t e[a,b] for a,b e R. Then we can write & (t) = X (u(t),v(t)) ((u(t), v(t)) is
a curve in R”whose image under X is @). Then

oX du X dv B}
7'(t)= """ ——_u'X v'X (1.8
*O=20w v 2 (18)

If s(t) represents the arc length along a (with s(a) =0) then

.. (1.9)
where r is a real variable.
And
~|l&'@)| ... (1.10)
SO
ds)* ., ) r s o Moo o
p —|&'®)|* =a'a =(u X1+vX2)(u X1+VX2)
Following Gauss’ notation (briefly) we denote
EZXl'Xl’ F:>_(>l>_(>2’ G:XZXZ ....(1.11)
and have
2
(ﬁ) _E(d”j +2F(d“ d")m(@j o (112)
dt dt dt dt dt
or in differential notation
ds? = E(du)? + 2F (dudv )+ G(dv)? ... (1.13)
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Definition (1.2.1) [9]

Let M be a surface determined by X(u,v). The first fundamental

2
form (or more commonly metric form) of M is (%) or (ds)2 as defined

in formulas (1.12) and (1.13).

Definition (1.2.2) [10]

The matrix of the first fundamental form of a surface M determined

by X(u,v) is

{E Fjg(gn 912}
F G 921 92
where E, F, G are as defined in formula (1.11). This matrix determines dot
products of tangent vectors.
If V=aX, +bX, and &=cX, +dX, are vectors tangent to a surface M at a
given point, then

V.6 =(aX, +bX, )(cX; +dX,)

= Eac+ F(ad + bc)+ Ghd

@ (¢ o)

Notation [9]

We now replace the parameters u and v with u! and u? in formula
(1.13).
We then have

ds? = gll(dul)2 +2g,dutdu’ + g, (duz)2 =Y gydu'dul ... (1.14)
ij

where the summation is taken over the set {1, 2}. If V is a vector tangent

to M at a point p and V:(vl,vz) in the basis {Xl,iz} for the tangent
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plane at p, then we have v =>v'X;.
i

If a(t) isacurve on M where & is represented by X(ul(t),uz(t)) then

&ﬁ):dkoiwakoizzszip
|

1.3 The Second Fundamental Form [11]

We have treated a path «(t) along a surface M as if it were the

—

trajectory of a particle in E3. We then interprete @"(t)as the acceleration

of the particle. Well, a particle can accelerate in two ways:
(1) it can accelerate in the direction of travel, and (2) it can accelerate by
changing its direction of travel. We can therefore decompose a@” into two

components, ar (representing acceleration in the direction of travel) and

ay (representing acceleration that changes the direction of travel). We

may have dealt with this by taking at as the component of &” in the

= =/

. . — — y a
direction of &’ computed as ax =[a".‘ — ]F
a

a
and ag as the “remaining component” of & (that is, &

14

oG- al).
The unit tangent vector T(s)=a'(s)=u’ X; with @ parameterized

in terms of arc length s, &z&(s):i(ul(s),uz(s)). We can see that

=/

a"(s)=T'(s) is a vector normal to &' where T'=kN. We again

decompose &"into two orthogonal components, but this time we make

explicit use of the surface M. We wish to write:

—

"n__ =n =n
a = atan + anor

=" =n

where ap,, IS the component of &" tangent to M and &, Is the

" ="

component of &” normal to M. Notice that af,, will be a linear

combination of X, and X, (they are a basis for the tangent plane) and
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dpor  WIill be a multiple of the unit normal vector to WM,
+ = Xyx X
U| calculated asU = —1-—2_|.

X1 %]

Now u'"X; is part of &f,,, but u' X! may also have a component in the
tangent plane. Well,
dX;

dX; oX; dut +6>Zi du?®
ds

out ds  au? ds

el

oX; ut + oX; u? :a—iiuj'.
ou’ ou® ou’
PX o . .
If we denote m: Xjj (we have assumed continuous second partials,
u‘'ou

. . dXi o
so the order of differentiation doesn’t matter) then we have d—' = Xj;u I
S

So acceleration becomes

a'=u" X, +u'ul'X;.
We now need only to write )Zij in terms of a component in the tangent

plane (and so in terms of X;and X,) and a component normal to the

tangent plane (which will be a multiple of U ).

Defimition (1.3.1) [11]

With the notation above, we define the formula of Gauss as
Xij:FiEXF+LijU' (115)

That is we define L;; as the projection of )Zij in the direction U . Notice,

10
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however, that I'; may not be the projection of Xij onto X, since the X, ’s

are not orthonormal.

Note [11]
Since projections are computed from dot products, we immediately
have that
1 X A2
We therefore have
" =afy, + o =" +Tiu"u)X, + (Lu'ulHU .. (1.17)

Definition (1.3.2) [12]

L, L
The second fundamental form of surface M is the matrix [ 1 lej
21 22

where the determinate of this matrix is L. The projections L;; are defined
in formula (1.16).

1.4 Gaussian Curvature [13]
If f(x,y,z) is a (scalar valued) function, then for ¢ a constant,
f(x,y,z)=c determines a surface (we assume all second partials of f are

continuous and so the surface is smooth). The gradient of f is
vi | OF o ot}

oX oy oz

If v, is a vector tangent to the surface f(x,y,z)=c at point

P, =(x.,v.,z,), thenVvf(x.,y.,z.,) is orthogonal to V. (and soVf is

orthogonal to the surface). The equation of a plane tangent to the surface

can be calculated using Vf as the normal vector for the plane.

11
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